If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2f^2+21f+10=0
a = 2; b = 21; c = +10;
Δ = b2-4ac
Δ = 212-4·2·10
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{361}=19$$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(21)-19}{2*2}=\frac{-40}{4} =-10 $$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(21)+19}{2*2}=\frac{-2}{4} =-1/2 $
| v^2+10v+9=0 | | 5x-2+x=9+3x+10= | | y+1/3y=0 | | 8x(7-x)=0 | | −8x+4+2x=−10x+24 | | x+2÷6=10 | | 6m^2+60m–66=0 | | 21t^2+13t+2=0 | | 4d+5(d-1)=3-d+2 | | -f−10=4f | | x+71=212 | | 6x^2-24x=-2x^2-3x-10 | | 2+5v=-33 | | 4y^2+35y–9=0 | | y=8=13 | | 4(3x-1)=8x=8 | | 3(x+12)=2(11−2x) | | 5h^2–41h+8=0 | | 8−3k=-k | | 13-3v=41 | | 4n^2+45n+11=0 | | 5d^2–29d–6=0 | | 5d2–29d–6=0 | | X=-y^2+3y-4 | | -7y=4−9y | | -2d=-3d-8 | | 3x+78438=23 | | 5x-19=6x-3-7x=0 | | -x/8=-3.7 | | 2(2x+3)=3(15-2x) | | -1x^2+190x+28000=0 | | 4=13x+10-7x |